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Visual Utility for the localization of Corona-Accelerated Nuclei

J. Spagnuolo Jr.,* Cecilia Cheng,"'U. M, Schwuttke,? and Felipe Hervias’
Jet Propulsion Laboratory, California Institute of Technalogy. Pasadena, California 91109.8099”

The proton prediction systemdevelopedby Smartand Shea(Smart, 1). 1., and Shea,M. A, “1'1's76 A Comput-
crized ‘Event Mode’ Solar Proton Forecasting Technique,” Solar Terrestrial Prediction Proceedings, edited by R,
I Donnelly, Vol. 1, National Oceanic nnd Atmospheric Administration/Environmental RescarchLab., U.S. Dept,
of Commerce, 1979, pp. 406-423) provides the approximate magnitude of the luxesof solar-flare-cjected protons
in the vicinity of the Earth. A system is described that extends Smart and Shea’s workin thatit predicts fluxes
of sock protonsatarhitrary points of the inner hetiosphere near the plane of the solar equator. It hasinteractive
graphicalcomponcnls that enhance the user’'s overall perception of a flare’s effects upon the solar Systcm while
also providing precise user-requ ested data, The flux predictions of the syste moagree well with proton flu xes as

measuredby various spacecraft. Results arc given. A database of flare eventsis maintained andcanbeuscd for a
retroactive analysis when itis desired to know the magnitudesof potential protonfluxes ductoaprevious flave,

Nomenclature
@ distance from the son to a point under discussion
divided by a quantity discussed in Eigs. (15-22.)

d(x, y) distance from apointor body xtoa point or
body y, km

re, radios of the son

(xp,.v) coordinates of a point b withrespecttoa
heliocentric coordinate system whose 1 - v plane
passes through the solar cquator

f center of the Earth

£ -point point contained in the intersection of e-sun plane

and solar equator that is closestto Earth
planc containing the center of the Earthand the
north and south poles of the sun

¢ -sun plane

Ay heliocentric latitude of the solar flare # rad

¢ angle used to form the spiral shape as discussed
inkigs (15- 22), rad

1 an arbitrary pointin spacc

7, 4 point in spacc atposition

T-point point in tbe intersection of t-sunplanc and solar

cquatorthatis closest [() T
plane containing an arbitrary pomtin space r and
the north and south poles of the sun

©sun plane

da Archimedean angle, rad

¢ heliocentric longitude of the solar flare /- with
respect [0 Earth, rad

¢ verticilangle between a line [ passing through
the sun's center and the solar equator, rad

¢, , angle. betweenthe g pointand the ypointalong,

the solar equator, rad

Introduction
rpyHERE s considerable controversy as to whether flares arc the
1 sole producers of energetic protons or whether corona] mass
cjections play acentral role. We note that the systemydescribed in
this paperis presently capable of computing flux predictions only for
protons associated with solar- flare activity. The techniques used in
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this paper (lo not permit the inclusion of ashock-associated particle
increase such asis oftenpresentat the pass age of aninterplanctary
shock, Therefore, evenif’ not explicitly stated, all proton fluxes dis-
cussed in this paper will be those associated withflares

Solar- flare-associat ed phenomena can cause a varicty of diffi-
cultics in spacecrafl miission operations ' Detailed knowledge o f
theintensity of the protonfluxes over time(romn an observed solar
flarc can provide informationto mission personnel that woulden-
able them to minimize the elfect of flares on opera tions. Further, if
some aspect of mission operations exhibited unexpected behavior in
the past, itwould be useful torule out or demonstrate the possibility
thatsolar- flare- associated phenomena mighthave beenthe source
of the problem. Such @ retroactive analysis has already been (tone
with regpeet to Mars Observer” and Topex

Much work has been done on determining the criteria for predict-
ing the impactof solar-flare-¢jected protons upon the Earth.* Smart
and Shea ™ and Heckman ctal.” have devised maodels that predict
the fluxes atbEarth on the basis oteertamelectromagnetic indicators
sentoutby the flares ‘1 he Smaret- Shea and Heckman models yield
flux data for Barth thatare g enierally within an order of magnitude
of the real flux values

ftwas desiredio determine whether the undertying ideas of any of
these existing systems could he generalized to predict proton fluxes
Tor points ol the solar system other than Ea rth, 1t was also desired
to add appropriate praphics that would enhance the user’s overall
pereeption of the solar flare’s effects upon the solar system while
providing, at any time, precise and-accurate lux data The sol a -
flare tool developed from these specifications is called the visual
utility tor the locatization of corona-acccterated nuclei (VULCAN)
and is named after the Roman god of fire. The basis for VU 1. CAN
is the Smart- Sheamodel® « rel’erred to as PPS86. Smartand Shea
described how to extend their model [o the inner heliosphere near
the plane 01 the solar cquator® “ and were readily available for dis-
cussions on the scientific as wellas practical aspects of their work
These reasons, together with the long documentation and imple-
mentation history character izing PPS86, made it a good choice for
the basis of VULC AN,

VULCAN relics on 1- §-A peak x-ray data from rhc National
Oceanographic and  Atmospheric - Administration (NOAA) in
Boulder, Colorado, for indication of solar-flare activity. The peak
flux, the timeotdetection, and the latitude andlong itude associated
withthe flare are also sentF luxes resulting from proton producing,
locations outside of the visible | 80-deg arca for Earth arc not com-
puted by VULCAN, as NOAA is not able to acquire the requisite
x-ray data Required planctary data are provided by the SPICE 10
system The SPICE systemprovides ephemeris data and associated
soltware that accurately computes the positions of the sun, plan-
ets, spacecratt, and other celestial bodies of interest over specified
periods oftime Advantages of using VULCAN include improve. (!
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cthaenicy m solving ground-link and instrumentation tailure prob
lems, specilic ophons relating (o the deliy of co mirnunicatnons be-
tween ground stations until peak disturbances have subsided. and
possible opportunities for cond ucting science observations
Comparisons of VULCAN’s flux computations vs e asured pro-

ton fluxes for spacecraft In the inner heliosphere near the plane of

the solatequator are presetited in the last secnon ot the paper. For
points outside this region, the valid ity of the VULCAN software1s
less certain. | towever, VU LCAN has the capability of incorporating
arbitrary trajectories intoits graphics and computational modules [0
derive a prediction of fluxes al points away from the solar equator
outside the inner hetiosphere, thus enabling future experimentation
with the program to determine the limits of its accuracy

tventhough Smartand shea produced specifications for extend-
ing theirprotonprediction model, other techniques having ageome -
ric and analytic nature had to be dev cloped to facilitate the merg ing
of these specifications with [heir already existing theory to produce
VULCAN., Aside from the discussionsof the graphics displays, the
presentation of certain of these mathematical considerations char-
acterizes what follows.

Narc-Angle Determination

Background

Data required torun VULCAN are obtained fromthe Space En-
vitonient Laboratory of NOAA in Boulder, Colora do [n additio o
o parametersrelating tothetime of the flare and itsassociatedx-ray
data, the latitude andlongitude of the flare withrespecttothe Barth
are obtained “1 he exact meaning of the phrase latitude andiongi-
tude withrespect [o xwiltbe given inthe following discussion ‘[ he
putpose of the lare extrapolation alporithmas to use the latitude arid
longitude of a flare with respect to Earth to determine the location
ot the flare with respect to an arbite ary pomnt in space at whice howe
wish to compute the fluxes

Geametry

To describe the flare-angle extrapolation algorithm. we first dis-
cuss certain geometrical aspects of the problem. The spatiality of
the ¢ sun plane, the - sun planc, the £ point, and the © point ate
Hlustated in Fig. Ta. Here, the four astensks represent the north and
south poles of the sun, &, and 7. The dashed curved lines represent
the intersections of each of the planes with the sun's sutlace. The
angle ¢,  is shown as well. Figure 1h presents a top view of Fig 1a
Since the twniliar generalized form ol the Pythagorcan theorem is
vsed to derive cos g, o, we have 0 < ¢, o < 1. Anappropriate sten
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Fig. 1 Earthand 7 planes: a) side perspective and b) top perspective
of e-sunplancand 7- sunplane.

~
]
~

will begiven o the angle ¢, based upon considerations presented
i the following discussion

As mentioned cartlier, the latitude and longitude ot the flare arce
computedandsent 10 VUI .( AN by NOAA at Boulder, ( ‘otorado
Latitude is measured inthe intervals [0, 7/2) and {0, n /?] going
fromithe solar equator 10 north pole arid south pole respectively. As
labeled in Fig.1b, positive longitude (from the earth’s perspective)
is measured counterclockwise (from the vantage point of the north
pole) on thesolar equator in theinterval [o, 71, where () is the
Epom(ANcg‘qtivcIongitudc is measured clockwise intheinterval
[0, n1. Thelongitude of a flare as sent by NOAA is approximately
in the interval [- n/2.7/2]. since ithas to be seen by Farth The
longitude of a flare withrespect 10 an arbitrary pointt in space 1s
subject [0 thesame interval conventions as mentioned aboveexcept
that the flare longitude is measured in rclationto 1. The theory
underlying VUL.CAN is such thatif itis desired to compute the
flux atapoint in space, thenthelatitude and longitude of the flare
with respect tothat point (measured as described above) must be
usedin the computation. If 1. is a line drawn from the suncenter
to thepoint in space, then the latitude of the flare withrespect
to the point is casily given by A - ¢;However, the longitude
of the flare from NOAA is given with respect 1o the &-point and
notwith respect toafixed location on the sun (as latitudeis with
respect 10the solar equator), Therefore, the longitude of the flare
has to beadjusted in a more complicated fashion 10 computethe
flux for points other than atkiarth The purpose of the tlarc-angle
extrapolation algorithm is to compute this adjusted longitude given
[he longitude of theflare as sent by NOAA “To derive theproper
long itude to compute the flux at a pointt, wemustuscthe flare
longitude with respect o Earth and  the longitudinal angle ¢, , that
18 as shown i Fig Ib

A demonstration of whatis involved in this computationinvolves
a consultation of Fig 2 The quantities ¢, ,, and @ are the angles
betweenthe Earth and the pointsat positions | and 2, respectively
The positions of the plancts arc computed withrespect to anyy-;
coordinate system where the x- y plane is the plane 01 rhc solat
equator. The quadrants arc numbered as indicated. In genceral,to
determine the longitude of a flare with respect 1o a pointinspace,
the alg orithm first co mputes the magnitude of the longitudinal angle
between the ¢ pointand the 1 point in space as defined ¢ arher By
examining the flare angle, the flare extrapolation algorithm does d
case-by-cascanalysis based on the quadrantsthe plancts aretn The
quadrants are based uporithe £ pointand the rpoint a\ discussed
cartier. Using these cases, the programdetermines whetherto add
plusorminus the angle between the Earth andito the already known
flare angle ¢, (given with respect to Farth), to obtaintheangle
between t and the flare. For example, if the Earth is in guadrant |

direstion of
earth’s revalutlion

Fig. 2 Ocbital perspective of arbitrary points and Earth.
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diraction of
esrth‘s revolution

v \

Fig. 3 Some positions requiring arctangent treatment,

and ilris inquadrant 11, asample orientation of which is shown
intig. 2, thenthe angle between the target at position 1, 1,,and the
flareis ¢ - ¢, M the Barthis in quadrant 1 and tisinquadrant iV,
thenthe aynf:lchqlwccn the flare and T2is ¢y + ¢ r,. Whenthe angle
fulls outside e intervals [(). 7 ] and {0. - 711 mentionedcarlier, “tic
propram willadjustitso thatit is within these intervals. We discuss
this in what follows

Knowing which quadrants the Earth and target arc in is gen-
erally not sufticient for determining @ ,. If the Earth and target
arenthe same quadrants or arc in opposite quadr ants (1 and {1l
orlland IV), 1t i\ not clear whether to add ¢, , to or subtractit
from @710 determine the longitude of the flare with respect to
the point 1In these cases, the arctangent function is used to de-
termine the relative positions of flare rnd target. For example, in
Fag 3, atargetin quadrant 1T could be in position 3 or 4. In po-
sition 3, the angle between the flare and tvis ¢ ¢, ., However,
ifTisatposition 4. the angle betweenthetargetand the flare is
¢r1 ¢, ., - Note that this angle falls outside the prescribed longi-
tudinalintervals [0.71,[0, ], In this case, the algorithin adds

2110its value sothatit dots fall in onc of the prescribed inter -
vals ratargetisinthe same quadrant as the Earth, ambiguitics
arise aswcll Inposition 1, the angle between the flare and ¢ is
¢1 ¢, .., whereasin position 2 the angle. is @F + @iy in fact,
it7 and¢ arc inquadrant |, [hen whether @ .« is added to or sub-
tracted from ¢, depends upon whether t's position is clockwise.
or counterclockwise o the g-sun plane. Also, if € is in quadrant}
and risan quadrant 1. then whether ¢, |, is added to or subtracted
from@: depend\ on whethet 7s positionis counterclockwise m
clockwise [0 the extension of thee- sun plane into quadrant Il
Wenow show how these ambiguities arc resolved try use of the
arctang entfunction. In what follows wc assume that(a,, y.)arc
the coordinates of Earthand (x;;, y.;) arc the coordinates of t at
position g for1<{ < 4.1t crrn be determined that in quadrant
Iarctan(yy, /a,, ) >arctan(y, /x). We can use [his information to
conclude that ¢ ., canbesubtracted from ¢4 to obtain the correct
angulardistance betweent and the flare whent is in posit ion .
Further, based upon the fact thatarctan(yy, /x,, ) < arctan(y, /x,), the
algorithmadds the angle ¢, 10 #1whent is in position 2o de -
termine the angle betweenthe flarcand ry. Using similar reasoning
for the third quadrant, the fact that arctan{y,, /x,, ) < arctan{y, /x. )
canbeusedto determine that the angle. betweenthe target at po -
sition 3 and the flarc1S ¢y - ¢y Also, since arctan(yy, /xe,) >
arctan (y, /x, ), the angle between the flarc andrat position 4 is
@1 -1 @ur, . Wenote that the geometrical relations displayed in the
figures arc only examplesused 10 illustrate techniques that arc used
in an extended and modified form throughout the algorithmandrep-
resentonly asubset of what has to be considered, [o determine the
aniglebetween 7 and F given more generalinitial configurationsof g,
1, and f

Analysis

Background

Inthe lastsection, we gave an overall view of the spalial onen-
tation between points that were determined by the ¢ sun plane and
various r- sun planes intersecting the solar equat or. In this sechon,
we determine the coordinates of an arbitrary *x "~point giv en the
coordinates ot an arbitrary point \\. Fromthis, wec canthenfinda
general form for [Ire distances betweenthe g pointand the sun center.
between a 7 pointand the sun's center, and between the € point and
the 7 point. This enables us to determine the angle ¢, , between the
Barth and r using the generalized Pythagorean theorem We assume
that the Carlesianplanc in which all computations arc donc has as
its originthe center of the sun with the -t z and z axes passing,
respectively, throughthenorth and south poles of the sun,

Formulation

Give.n thattis an arbitrary point in space, possibly representing
Earthor any other planet, spacecraft,orobject in the solar system,
wc firstdetermine the equation of ther-sun plane. In our chosen
coordinate system, the origin, north pole, and projection of the center
of ton the X - y Cartesian plane are all in the z planc. These points
aredenoted by ((, 0.0), (0,0,z,),and (x,, ¥, O), respectively. From
this, we deducc that the equation of ther plane satisfics

Ax, 4 By, = 0 (n

Ifbothx, and v, arc (). then 7 is atthenorth or south pole and the
Archimedean solar tansport model does notapply We thus assume
that both yre not simu ltanicously equiatta O 11 s Oandy s not O,
then 1 (0, ). wherevasthesignof v, Ify, s (0 and X, 18
not O, then = (or 0), where vis the sipnof x,. The following
analysis assumes therefore that neithery, 101y, is equalto 0. Since
this assumption in turrtimplies that A = 0 it and only if I3 = 0.
we therefore assume alsothat A and 8 arc bothunequal 10 O the
analysiswhichtollows

Fromthe preceding paragraph, we can normalize the coefficient
of v and obtain

t (v /yy = 0 )

as thie cquation ot the @ plane. Since the 1 pointintersects the sol o
equator, we have

Ve vy (g (VL) @
resulting in
R GV AU L A Y AU 4

“Thus, the possible cootdinates for the z point are

vo g el i (5)
ST (/)
and
\ . (6)

4 '
\/l 1 (/Y

where the plus-or-minus signs are due 10 the tacttha tthe 1 plane
intersects the solar €U0t two places. Notethatthere arc only
two pairs of coordinates (a\ opposed 10 four)because from Ea(2)
the positive rootis usedforyvil and only if the positive rootis used
for 1 We nextcompute the distance from (x,,. y,,. O) 1o cach set of
coordinates (1. v, . O) and (x. y. ()). where the former denotes
the positiveroots of Eqs (5) and (6), and lhclnucrlhpncf,miycrools.
we then choose the coordinates that represent the pointthatis closer
10 (x,.v,. (1). sincethe distance from(x,, y,, O) m the 7-pointis
always lessthanthe distance from(x,, y,, () to the pointdircctly

opposite the1-pointonthesolar equator. Inmathematical terms, if
we define
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then

.y " (I“ : ll]ill‘lln. fll |
. : (8
t poin (v it oy o min{da.di} :

Lquations (7) ;\_nd(x) C o111 have beenreplaced by a procedure
that compared €9Grdinate signs between (uy ) and (v, v,) and

[ LTI B LY A 17

hetween (v, vy) illld(x,,‘\',,);Im\\'cvcr. we leltthat ¢ i Mathemat-
icat approach wis cleaner than a case-by-case analysis

Graphics
Archiniedean Spiral
“The Archimedean angle with respect Lo a point € iy detined as
the angular distance that the sun rotates in the tme it takes for a
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Archimedean- spirat analysis

Fip. 5 Intuitive view of flux data.
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Fipure S shows the windows for the intuitive treatment of the
solar system The leftmost window has a listing of the received

flate events from Bould er. 1n the rightmost window, the color of

cach Archimedean spiral indica tes the intensity of the protons go-
g from sun to planct. Figure 6 presents more detailed Qux infor-
mation relating to flare events. | lere flux -vs-time graphs are dis-
played forvarious user-sclccled plancts and proton energy ranges
Finally, Fig. 7 displays the continuous movement of particles in time
throughoutthe solar system. A capability for display ing the various
orbital planes exists as well. The solar equator and the £- sun plane
are displayed

Comparisons with Real Data

Computed maximal values of the flux as compared with those
measured by actualspacecraftat varying positions withrespecttothe
sun arc shownin ‘1’able 1, Spacecraft distances from the sun ranged
from 0 77t01.52AU. The differential flux value.s are measuredin
protons/em’ s st MeV, and correspondingly the. integral flux is
measured in protons/cm? s sr. The actual flare angle with respect
to the Earth sun line was given by NOAA at Boulder. The flare
extrapolationalgorithmused the spacecraftirajectoryto compute the
ESP angle. subsequently deriving the angle between the spacecraft
and flare Table | represemts allcases in which we were ableto
obtainsufficientflare anti spacecraft datator comparison.”'2'* The
computed values are in accordance with the expected accuracy of
the Smart- Shea model.

Conclusions

We have developed a system that directly receives data from
NOAA viamodenand uses ephemeris data to predict (tic effects
of soliyrflares on the planets and spacecrafl(near the solar equa-
tor ) of the mner heliosphere Experimentation with the model’s
underlying predictive capability at other points of the solar 8ys -
tem is possible also, although the accuracy of the computed fluxes
is not guarant cedan [his region. The system allows as input user-
constructed flare events or those on record as sentby NOAA Lo
determine what fluxes will result, be they in the past or in the fu-
ture Graphical use interfaces together with manipulable views of
the solarsystemand color coding of proton flux paths facilitate
experimentation with interdependent parameters. This allows de-
ternnnationolthow an alteration of their values causes variations
onthe computed distribu tion over time of solar particles at various
points throughout the solar system. The accuracy of the model has
been demonstrated.
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